
Surface Mount Multilayer Varistors High Voltage (HV) Series

Features:

- Bidirectional and symmetrical V/I characteristics Low Capacitance
- Meet IEC61000-4-2 Standard
- Large withstanding surge current capability 400~500A (@8/20μs)
- Multilayer construction provides higher power dissipation

Shape and Dimensions:

Unit (mm)	Length (L)	Width (W)	Thickness (T)	Termination bandwidth (b)
MLV3220HV240V0500			4 = 0.00	
MLV3220HV270V0500			1.7±0.30	
MLV3220HV390V0500	8.1±0.30	5.0±0.30		0.8 +0.5/-0.1
MLV3220HV430V0450			2.2±0.30	
MLV3220HV470V0400				

Product Identification:

MLV	3220	HV	270V	0500
Category Code	Size Code	Application Code	Breakdown Voltage Code	Surge Current Code
MLV = Multilayer Varistor	Inch (mm) 3220 (8153)	HV = High Voltage	390V = 390V 430V = 430V 470V = 470V	0400 = 400A 0450 = 450A 0500 = 500A

Electrical Characteristics:

Operating temperature: -55 to +85°C

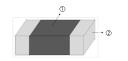
Part Number	Size				Surge Current ³ @8/20µs (A)	Energy (J)	Capacitance⁴ @1kHz (pF)		
		Vac	Vdc	@1mA (V)	Α	V	<u>ш</u> ол гор з (A)	(0)	@1K12 (β1)
MLV3220HV240V0500		150	200	240 (±10%)		390	500	> 14.5	380
MLV3220HV270V0500		175	225	270 (±10%)		450	500	> 16.0	340
MLV3220HV390V0500	3220	250	330	390 (±10%)	10	647	500	> 20.0	125
MLV3220HV430V0450		275	369	430 (±10%)		705	450	> 21.0	120
MLV3220HV470V0400		300	385	470 (±10%)		775	400	> 21.6	115

¹ The breakdown voltage was measured at 1 mA current.

² The clamping voltage was measured at standard current 3220 (10A).

³ The surge current was tested at 8/20 µs waveform.

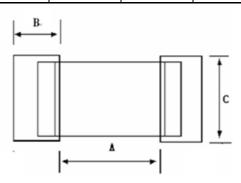
⁴ The capacitance value only for customer reference, it's not formal specification.



Surface Mount Multilayer Varistors High Voltage (HV) Series

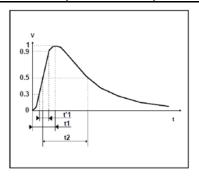
Construction and Materials:

Body	Termination	
1	2	
ZnO	Ag/Ni/Sn	



Packaging:

Chip Size	Parts on 7 inch (178mm) Reel	
3220	1,000	


Recommended Foot Print Dimensions:

Size	A (mm)	B (mm)	C (mm)
3220	6.2~7.0	1.6~2.6	4.8~5.8

Surge Waveform:

Severity Level	t1 (=1.67t'1)	t2
1	8 µs	20 µs

Environmental Test:

Test item	Test condition	Requirement
High Temperature Storage	* Temperature : 125±2°C * Time : 1000±2 hours * Test after placing in ambient temperature for 24 hours	* Breakdown voltage change : within ±10% * No mechanical damage
High Temperature Storage	* Temperature : 125±2°C * Time : 1000±2 hours * Test after placing in ambient temperature for 24 hours	* Breakdown voltage change : within ±10% * No mechanical damage
High Temperature Storage	* Temperature : 125±2°C * Time : 1000±2 hours * Test after placing in ambient temperature for 24 hours	* Breakdown voltage change : within ±10% * No mechanical damage
High Temperature Load	* Temperature : 85±2°C * Rated working voltage applied * Time : 1000±2 hours * Test after placing in ambient temperature for 24 hours	* Breakdown voltage change : within ±10% * No mechanical damage
High Temperature Load	* Temperature : 85±2°C * Rated working voltage applied * Time : 1000±2 hours * Test after placing in ambient temperature for 24 hours	* Breakdown voltage change : within ±10% * No mechanical damage

Product Identification:

MLV 0402 ES 012V 0100 N T (1) (2) (3) (4) (5) (6) (7)

(1) Series Code:

MLV - Surface Mount Multilayer Varistor

MVA -- MLV Array

(2) Size Code:

Standard EIA Chip Size

(3) Application Code:

ES - Electro-static Discharge Protection

NA – Normal Surge Protection

HA – High Surge Protection

(4) Max. Working Voltage:

012V – 12 V

(5) Capacitance for ES Series:

0100 - 100 pF

02R5 - 2.5 pF

Peak Current for HA/NA Series: 0100 - 100 A

(6) Capacitance Tolerance for ES Series:

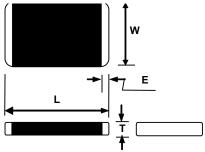
 $N - \pm 30\%$

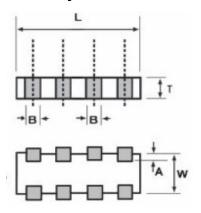
P - Special

(7) Packaging Code:

T - Tape & Reel

Operating Temperatures:


- -55°C to +85°C for size 0603 or smaller
- -55°C to +125°C for size 0805 or larger


Shape and Dimensions:

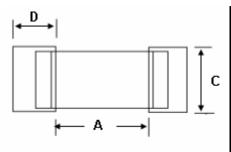
MLV Series

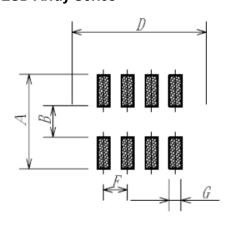
	Size	L (mm)	W (mm)	T (mm)	E (mm)
	0201	0.60 ± 0.03	0.30 ± 0.03	0.30 ± 0.03	0.30 ± 0.03
	0402	1.00 ± 0.10	0.50 ± 0.10	0.50 ± 0.10	0.25 ± 0.10
	0603	1.60 ± 0.15	0.80 ± 0.15	0.90 max.	0.30 ± 0.10
	0805	2.00 ± 0.20	1.25 ± 0.15	1.00 max.	0.30 ± 0.10
)	1206	3.20 ± 0.20	1.60 ± 0.15	1.20 max.	0.50 ± 0.20
	1210	3.20 ± 0.20	2.50 ± 0.20	1.50 max.	0.50 ± 0.20
	1812	4.50 ± 0.20	3.20 ± 0.20	2.00 max.	0.60 ± 0.20
	2220	5.70 ± 0.20	5.00 ± 0.20	3.00 max.	0.60 ± 0.20

ESD Array

Size	0508	0612
L (mm)	2.00 ± 0.20	3.20 ± 0.20
W (mm)	1.25 ± 0.20	1.60 ± 0.15
T (mm)	0.80 max.	0.95 max.
A (mm)	0.20 ± 0.10	0.20 ± 0.10
B (mm)	0.25 ± 0.05	0.40 ± 0.15

Terms and Definitions:


Term	Definition		
Max. Working Voltage	Maximum steady-state DC operating voltage with typical leakage current less than 50 μA at 25°C		
Varistor Voltage (BDV)	Breakdown DC voltage measured at current of 1 mA		
Max. Clamping Voltage	Maximum peak voltage across the part, measured at a specified pulse current and waveform		
Surge Current	Maximum peak current with the specified 8/20 µs waveform without damage		
Surge Shift △ V/V	The change of varistor voltage after applying the specified surge current		
Energy Absorption	Maximum energy dissipated with a specified 10/1000 μs waveform without damage		
Typical Capacitance	Capacitance measured with voltage bias less than 0.5 V _{RMS} at 1 KHz or 1 MHz		
Nonlinear Exponentα	$\alpha = (\log (V_{1mA}/V_{0.1mA}) / \log (I_{V1mA}/I_{V0.1mA}))$		
Leakage Current	Typical leakage current at 25 °C < 50 μA; Maximum leakage 200 μA.		
Cut-off Frequency	The frequency of -3 dB insertion loss		


Recommended Land Patterns:

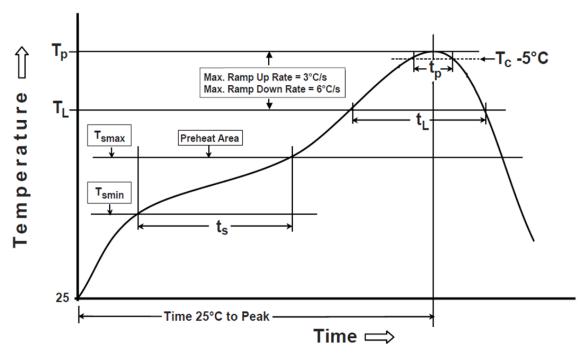
MLV Series

	Solder pad layout				
Size	A C (mm)		D (mm)		
0201	0.25~0.35	0.20~0.30	0.25~0.35		
0402	0.4~0.6	0.5~0.6	0.5~0.7		
0603	0.9~1.2	0.6~1.0	0.8~1.2		
0805	1.0~1.5	1.2~1.5	1.0~1.4		
1206	1.8~2.5	1.2~1.8	1.0~1.4		
1210	1.8~2.5	2.2~3.0	1.0~1.4		
1812	2.5~3.3	2.8~3.6	1.2~1.8		
2220	3.8~4.6	4.8~5.5	1.2~1.8		

ESD Array Series

Size	A (mm)	B (mm)	D (mm)	F (mm)	G (mm)
0508	2.10	0.40	2.50	0.50	0.35
0612	2.60	0.80	3.60	0.80	0.50

Environmental Tests:


No.	Test	Requirement	Test condition	Test reference
1	Soldering heat resistance	BDV change ≤ ±10% No mechanical damage	One dip at 260°C for 5 sec.	MIL-STD-202 Method 210 IEC 60068-2-20
2	Solderability	New solder coverage ≥ 80%	One dip at 255°C for 5 sec. Non-active flux	MIL-STD-202 Method 208 IEC 60068-2-20
3	Maximum surge current	BDV change ≤ ±10% No mechanical damage	100 pulses of 8/20 µs with maximum surge current and 30 sec. interval at 25°C and 30 ~ 65% RH	CECC 42000 IEC 1051-1 Test 4.5
4	Maximum surge energy	BDV change ≤ ±10% No mechanical damage	100 pulses of 10/1000 μs with maximum surge current and 90 sec. interval at 25°C and 30 ~ 65% RH	CECC 42000
5	Thermal cycling	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	5 cycles between -40°C and 125°C with 30 min. dwell time at the temperature extremes and 60 min. dwell time at 25°C	CECC 42000 IEC 60068-2-14
6	Low temperature resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	1000 hr at -50°C	IEC 60068-2-1
7	Low temperature load resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	1000 hr at -50°C with working voltage applied	IEC 60068-2-1
8	High temperature resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	1000 hr at 150°C	MIL-STD-202 Method 108 CECC 42000
9	High temperature load resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	1000 hr at 85°C with working voltage applied	CECC 42000
10	Humidity resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	500 hr at 40°C and 90 ~ 95% RH	MIL-STD-202 Method 103 IEC 60068-2-3 CECC 42000;
11	Humidity load resistance	BDV change ≤ ±10% No mechanical damage Leakage current ≤ 200 µA	500 hr at 40°C and 90 ~ 95% RH with working voltage applied	MIL-STD-202 Method 103 IEC 60068-2-3 CECC 42000
12	ESD contact test*	Varistor voltage change > 115% working voltage	Contact electrostatic discharge 100 times with 1 second intervals at 8 KV (Level 4) and polarity: +,-	IEC 61000-4-2
13	ESD air test*	Varistor voltage change > 115% working voltage	Air contact electrostatic discharge 100 times with 1 second intervals at 15 KV (Level 4) and polarity:+,-	IEC 61000-4-2

^{*} For ES series only.

Soldering Temperature Profile:

Profile Feature	Pb-Free Assembly	
Preheat/Soak Temperature Min (T _{smin}) Temperature Max(T _{smax}) Time(t _s) from (T _{smin} to T _{smax})	150°C 200°C 60~120 seconds	
Ramp-uprate (T _L to T _p)	3°C/second max.	
$\begin{array}{c} \text{Liquidous temperature}(T_L) \\ \text{Time}(t_L) \text{ maintained above } T_L \end{array}$	217°C 60~150 seconds	
Peak package body temperature (T _p)	260°C	
Time $(t_p)^*$ within 5°C of the specified classification temperature (T_c)	30 seconds *	
Ramp-down rate (Tp to TL)	6°C/second max.	
Time 25°C to peak temperature	8 minutes max.	
* Tolerance for peak profile temperature (Tp) is defined	as a supplier minimum and a user maximum	

Disclaimer

Specifications are subject to change without notice. AEM products are designed for specific applications and should not be used for any purpose (including, without limitation, automotive, aerospace, medical, life-saving applications, or any other application which requires especially high reliability for the prevention of such defect as may directly cause damage to the third party's life, body or property) not expressly set forth in applicable AEM product documentation. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Warranties granted by AEM shall be deemed void for products used for any purpose not expressly set forth in applicable AEM product documentation. AEM shall not be liable for any claims or damages arising out of products used in applications not expressly intended by AEM as set forth in applicable AEM product documentation. The sale and use of AEM products is subject to AEM terms and conditions of sale. Please refer